The Scientific Compute Platform provides WashU research faculty access to computing resources and a job scheduler that runs large-scale, parallel computing tasks with access to many CPU and GPU cores, large amounts of RAM, high-speed networks, and high-performance storage systems.

The service is centered around container technologies (e.g. Docker) to allow complex software environments to be deployed independently from other users while isolating complicated software dependencies. The Scientific Compute Platform aims to be well integrated with the Data Storage Platform, the Research Applications Platform, and Cloud Services, providing an ability to expand computational resources to integrated cloud solutions.

*PROMOTION: Enjoy complimentary access to our Scientific Compute Platform through FY25!

Scientific Compute Platform Rate Sheet

Access

Please review the four sections below to see if research computing is a good fit for your needs. 

Getting Started

The following are the steps required to activate access to the compute service. Collect the following information and select a compute resource:

  • Faculty status and Faculty WUSTL Key ID
  • WUSTL Key IDs for the members of your lab or research group you wish to grant access (please see the Scientific Compute Rate Sheet for costs)
  • Cost Center ID
  • Department Number
  • Network Location – The network IP address, which you can get by using this site: https://speedtest.ris.wustl.edu/
  • Technical Contact – The WUSTL Key ID of a member of your lab RIS can contact. regarding technical aspects of the service.
  • Billing Contact – The WUSTL Key ID of a member of your lab RIS can contact regarding billing.
  • Any storage service allocations you intend to integrate with the compute service.
Intended Users

Compute services are available to all WashU faculty, staff, or students involved in research.

Requirements and Considerations

Before accessing computing services, the following requirements must be met:

  • Must have a billable department at WashU
  • Should have an understanding of Linux computing environments
  • Have an understanding of container technologies like Docker
General Features
  • Base system
    • 5,000 Intel Cascade Lake Cores
    • 238 NVIDIA GPUs
    • 300TB DDN high-performance scratch space
    • 100Gbit Mellanox HDR Network
  • Batch computing across thousands of CPUs and hundreds of GPUs
  • Integration with WashU Research Network (WURN) (40Gbit)
  • Integration with Data Transfer
  • Integration with Research Storage
  • Independent software run times with Docker
  • Integration with WUSTL Key Identity
  • Dedicated 10Gbit connection to Google Cloud
  • Free training seminars and webinars

Compute Options

Compute Resources
Compute Condo
Scientific Compute Applications